
Example: VHDL model of a state machine

This example will show how a clock-flank-triggered automat with an asynchronous reset can

be modelled. Figure 1 shows the interface of an abstract Moore-Automat with two input

signals, three output signals, clock and an asynchronous reset signal.

Fig. 1: Interface signals of a Moore-Example-Automat

The automat graph for this example is shown below in figure 2. It is a synchronous, front-

flank-triggered Moore-Automat with four states. The single input combinations in_1 and in_2

are marked on the arrows. The output variables out_1, out_2 and out_3 are defined within

the states. An asynchronous, low-active reset signal (reset = '0') initiates an instantaneous

change to the state init. This is also the starting state.

Fig..2: Automat graph of the example automat

To model such a behavior in VHDL, you have to consider the following:

 An own counter-type can be declared for an internal "state-signal" for the four

possible states, that receives the single states as possible signal values.

 The flank-triggering of the state changes is done within a process, activated through

clk and reset. The query of the active signal flank is done using the signal attributes.

It is important that the reset signal has priority!

 Because the automat is a Moore-Type automat, the output variables are assigned

according to the state. This can be done in the same process or separately as a process

or quasi-parallel signal allocation.

This is the described automat behavior realized in VHDL code:

FSM
in_1

in_2

out_1

out_3

out_2

clk reset

init state_1

state_2 state_3

0 0 0 0 0 1

0 1 1 1 0 0

00
10

1-

01

01

11

11

00

01

10

0-
10

00

11

--

-- filename: fsm.vhd

-- title: Behavioural Model of a simple state machine

-- author: B. Wunder, ITIV

--

ENTITY fsm IS

 PORT (clk, reset : IN bit ;

 in_1, in_2 : IN bit ;

 out_1, out_2, out_3 : OUT bit) ;

 TYPE fsm_state IS (init, state_1, state_2, state_3) ;

END fsm ;

--

ARCHITECTURE behavioural OF fsm IS

 SIGNAL state : fsm_state := init ;

BEGIN

 new_state : PROCESS (clk, reset)

 BEGIN

 IF (reset = '0') THEN

 state <= init ;

 ELSIF (clk = '1' AND clk'EVENT) THEN

 CASE state IS

 WHEN init =>

 IF in_1 = '0' AND in_2 = '1' THEN

 state <= state_1 ;

 ELSIF in_1 = '1' AND in_2 = '1' THEN

 state <= state_2 ;

 END IF ;

 WHEN state_1 =>

 IF in_1 = '1' THEN

 state <= init;

 ELSIF in_1 = '0' AND in_2 = '1' THEN

 state <= state_2 ;

 END IF ;

 WHEN state_2 =>

 IF in_1 = '1' AND in_2 = '1' THEN

 state <= init ;

 ELSIF (in_1 = '0' AND in_2 = '1')

 OR (in_1 = '1' AND in_2 = '0') THEN

 state <= state_3 ;

 END IF ;

 WHEN state_3 =>

 IF in_1 = '1' AND in_2 = '1' THEN

 state <= init ;

 END IF ;

 END CASE ;

 END IF ;

 END PROCESS ;

 output_assignment : PROCESS (state)

 BEGIN

 CASE state IS

 WHEN init =>

 out_1 <= '0' ;

 out_2 <= '0' ;

 out_3 <= '0' ;

 WHEN state_1 =>

 out_1 <= '0' ;

 out_2 <= '0' ;

 out_3 <= '1' ;

 WHEN state_2 =>

 out_1 <= '0' ;

 out_2 <= '1' ;

 out_3 <= '1' ;

 WHEN state_3 =>

 out_1 <= '1' ;

 out_2 <= '0' ;

 out_3 <= '0' ;

 END CASE ;

 END PROCESS ;

END behavioural ;

