
Example: VHDL model of a state machine

This example will show how a clock-flank-triggered automat with an asynchronous reset can

be modelled. Figure 1 shows the interface of an abstract Moore-Automat with two input

signals, three output signals, clock and an asynchronous reset signal.

Fig. 1: Interface signals of a Moore-Example-Automat

The automat graph for this example is shown below in figure 2. It is a synchronous, front-

flank-triggered Moore-Automat with four states. The single input combinations in_1 and in_2

are marked on the arrows. The output variables out_1, out_2 and out_3 are defined within

the states. An asynchronous, low-active reset signal (reset = '0') initiates an instantaneous

change to the state init. This is also the starting state.

Fig..2: Automat graph of the example automat

To model such a behavior in VHDL, you have to consider the following:

 An own counter-type can be declared for an internal "state-signal" for the four

possible states, that receives the single states as possible signal values.

 The flank-triggering of the state changes is done within a process, activated through

clk and reset. The query of the active signal flank is done using the signal attributes.

It is important that the reset signal has priority!

 Because the automat is a Moore-Type automat, the output variables are assigned

according to the state. This can be done in the same process or separately as a process

or quasi-parallel signal allocation.

This is the described automat behavior realized in VHDL code:

FSM
in_1

in_2

out_1

out_3

out_2

clk reset

init state_1

state_2 state_3

0 0 0 0 0 1

0 1 1 1 0 0

00
10

1-

01

01

11

11

00

01

10

0-
10

00

11

--

-- filename: fsm.vhd

-- title: Behavioural Model of a simple state machine

-- author: B. Wunder, ITIV

--

ENTITY fsm IS

 PORT (clk, reset : IN bit ;

 in_1, in_2 : IN bit ;

 out_1, out_2, out_3 : OUT bit) ;

 TYPE fsm_state IS (init, state_1, state_2, state_3) ;

END fsm ;

--

ARCHITECTURE behavioural OF fsm IS

 SIGNAL state : fsm_state := init ;

BEGIN

 new_state : PROCESS (clk, reset)

 BEGIN

 IF (reset = '0') THEN

 state <= init ;

 ELSIF (clk = '1' AND clk'EVENT) THEN

 CASE state IS

 WHEN init =>

 IF in_1 = '0' AND in_2 = '1' THEN

 state <= state_1 ;

 ELSIF in_1 = '1' AND in_2 = '1' THEN

 state <= state_2 ;

 END IF ;

 WHEN state_1 =>

 IF in_1 = '1' THEN

 state <= init;

 ELSIF in_1 = '0' AND in_2 = '1' THEN

 state <= state_2 ;

 END IF ;

 WHEN state_2 =>

 IF in_1 = '1' AND in_2 = '1' THEN

 state <= init ;

 ELSIF (in_1 = '0' AND in_2 = '1')

 OR (in_1 = '1' AND in_2 = '0') THEN

 state <= state_3 ;

 END IF ;

 WHEN state_3 =>

 IF in_1 = '1' AND in_2 = '1' THEN

 state <= init ;

 END IF ;

 END CASE ;

 END IF ;

 END PROCESS ;

 output_assignment : PROCESS (state)

 BEGIN

 CASE state IS

 WHEN init =>

 out_1 <= '0' ;

 out_2 <= '0' ;

 out_3 <= '0' ;

 WHEN state_1 =>

 out_1 <= '0' ;

 out_2 <= '0' ;

 out_3 <= '1' ;

 WHEN state_2 =>

 out_1 <= '0' ;

 out_2 <= '1' ;

 out_3 <= '1' ;

 WHEN state_3 =>

 out_1 <= '1' ;

 out_2 <= '0' ;

 out_3 <= '0' ;

 END CASE ;

 END PROCESS ;

END behavioural ;

